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NASA TT F-15,114

ELASTIC VIBRATIONS IN ROLLER BEARINGS1

I. THE ROTATING MASS IS BALANCED WITH
RESPECT TO ITS OWN ROTATIONAL AXIS

B. Szoke2

I. INTRODUCTION /3*

In investigating roller bearing vibrations it is important to pay special
attention to the causes of such phenomena. Juergensmeyer [2] is concerned
with vibrations caused by faults in finishing and mounting.
According to the assumptions of Perret [3, 7] and Meldau [9] the deformations
occurring under load can also be considered as contributing to vibrations.
Szoke [10, 25-28] points out that "kinetic" vibrations can also occur in a
roller bearing presumably free of flaws and deformation. Now, since the
notion of deformation has acquired a special meaning in theoretical expla-
nations since Stribeck [1] published his findings, and since we must actually
deal with deformation at all times as a consequence of load, investigation of
the causes of the vibrations conditioned by deformation is indicated and very
promising. The question deserves to be treated even more because the above
mentioned authors, who have dealt with the question, have analyzed this
subject in connection with these bearings for only the rarest case of very /4
small rotational rates (zero rotation rate), and because in the final analysis
their conclusions differ from one another [8].

So it is necessary to treat the problem in greater detail in order to
determine what is essential, including all possible operating states.

Our explanations have the purpose of describing the microgeometric
phenomena so deeply and thoroughly that within the framework of a general
solution all parameters characteristic of bearing construction on the one hand
and of operating states on the other can be considered.

II. FUNDAMENTAL CONDITIONS

In the usual analysis of the proper dimensions of rolling bodies it is
customary to represent a roller bearing without play and also to accept the

IThis work, submitted under the heading "Microscope", won the prize awarded
by the Hungarian Academy of Sciences

2B. Szoke titl. Universitaetsdozent, XVIII, Batthyany u. 139, Budapest,
Hungary
*Numbers in the right hand margin indicate pagination in the foreign text.
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simplification that the midpoint of one ball is struck exactly by the line of
application of the external force. Now, however, in practice there is no
bearing without.play and thus the shaft, in relation to the outer race, is only
in a stable state if at least two balls and generally several pairs of balls,
with a greater load, are in contact with the race (Figure 1). At first (up to
Section XI) the assumption, in the sense of theoretical research common at the
turn of the century, that the Hertzian deformations occur only on the ball
surfaces, but with the racer surfaces maintaining their exactly circular form,
will be followed.

Basic (Position at First Moment of Tilting)

P

'I!

e

Figure la. Beginning of Tilting in the Case
Without Deformation



In addition we shall also accept the assumption that the rolling bodies
in the unloaded state touch the inner race and that the clearance is found
between the outer circumference of the balls and the outer race. Furthermore
the rolling bodies will be briefly designated below as rollers or as balls,
without consideration of the fact that the deformation of the balls is
relatively greater, and that therefore it is more important to consider the
tolerance of roller bearings.

Under these assumptions the midpoint 0 of the rotating shaft along with
the cage can describe a circular movement around midpoint K of the outer race
of such a type that the eccentricity of the race in the unloaded position turns
out to be smaller, while it is greater under load by the mass of the flatten-
ing deformation of the balls (Figure la).

For better understanding Figure 2 represents the geometric position for
the case where the midpoint of the outer circumference of the balls is shifted
radially from the midpoint K of the outer race to point 0 in such a way that
only two balls remain in contact with the outer race.

Figure 2. Geometrical Relationships as a
Consequence of Deformation
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K

Figure 2a. Geometric Relationships Without
Deformation

According to this figure the eccentricity amounts to /7

KO = e = - os  (1)
cosy

where = co

means the radial tolerance in the unloaded state which vanishes in the balls
in contact.

As a result of a deformation 61 of the balls of the first bearing pair of

balls, there is a settling in a loaded state by the mass s of the shaft mid-
point from position 0 into the new position 0'. The following equation is now
valid for this

KO'.= e+s = h6
cos y(2)

where consideration of equation (1) leads to

S= s8 Cos (3)

With settling s and deformation 6 pertaining to any arbitrary angle
= 2(n + 1)y we get:

L . cos i (2a)

4



From the figure we can determine that angular opening 2 on the circum-
ference of the balls, the legs of which embrace the balls in contact with the
race in the case of a shaft settling caused by deformation.

In the sense of equation (2a) that angle c should be found at which the
deformation of the ball is equal to zero, i.e., where

e+s -
/ cost

and from which consideration of equation (1) produces the equation

h e cos y cos .
cos=-- - e+s 1 se (4)

In this equation all variables are understood as approximate values; this
approximation is characterized by the assumption that the corrected eccentri-
city e' = e + s - z' is really very small in proportion to the radius of the
outer race, an assumption which proves to be correct during the course of our
explanations.

III. DESIGNATIONS OF THE MOST IMPORTANT CONCEPTS (In Reference to Figures /8
1 and 2)

d = 2r = diameter of the inner race which is assumed to be firm
(deformation free); at the same time d is the diameter of
the inner circumference of the ball race;

b = diameter of balls describing a planet wheel movement;

Dk = 2Rk = d + b = mean diameter of the ball cage;

Db = 2Rb = Dk + b = d + 2b = outer circumferential diameter of the unloaded

balls;
h = radial bearing play in unloaded state which cannot be

directly measured in the case of an odd number of balls;
D = 2R = d + 2b + 2h = Dk + b + 2h = Db + 2h = diameter of the firm (defor-

mation free) outer race which is at the same time in contact
with the balls inside the load arc;

z = number of balls;
y = 1800/z = one-half the distribution angle of the balls;
e = h/cos y constantly measurable distance [ = eccentricity]

between the midpoint K of the outer race and the midpoint 0
of the inserted unloaded ball cage;

s = settling of shaft midpoint 0 measured at the partition lines
of the load arc angle, caused by the deformation of the load-
ed balls;

e' = eccentricity around point K in loaded state;
e' = eccentricity around point K, enlarged by deformation, where

the distance KK' = z' = same as osculating circle with
radius e';
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61 263 6 '=Hertzian computed value of the oblateness brought about by

deformation-of the first, second, third, etc., pairs of
balls, which at the moment are in a symmetrical position to
the bisection lines of the load arc;

= half angle of the load arc;
= half sector angle of the bearing balls within the load arc;

always a whole number multiple value of angle y;
p = h tan y = e sin y = radius of the basic circle touched

tangentially by the vectors of the two neighboring, unZoaded
balls touching the race, where these same vectors enclose
the indicated basic circle during rolling;

p' = e sin radius of the basic circle assigned to the two load
carrying balls in the outermost Iposition within the load
arc;

n = rotations per minute of the shaft rotating around midpoint 0;1
w = nf/30 = rotating angle velocity of the same shaft;

nk = nd/(D + d) nd/(2Dk) = number of revolutions per minute of the ball cage,

simultaneously the speed of rotation of the shaft midpoint 0
on the circular path disposing of an eccentricity of e';

*k = wd/(D + d)- wd/( 2 Dk) = angular velocity of the rotating ball cage and

midpoint 0;
G = weight of the mass m rotating around the shaft center- 0

with rotational number n and balanced on the shaft midline;
g = gravitational constant;
F = components of the force operating from outside on the bearing

(e.g., belt tension, tooth pressure), assumed to be un-
altered;

P = G + F = resultant of the specific weight and the external force
components operating on the bearing;

m = mass reduced on the shaft midpoint and balanced on the shaft
midline;

a = P/m = mass acceleration;

C = mew2 = centrifugal force as an opposing power of the centripetal /.

force caused by the revolving motion on the unloaded bearing;
C' = me'mw = centrifugal force on a loaded, eccentric bearing;k

c e = centrifugal acceleration on an unloaded bearing;k
c' = e'mk = centrifugal acceleration in a loaded, eccentric bearing;

Q =P + 0 = resulting force, without regard to ball deformation;
Q' = P + 0' = resulting force with consideration of ball deformation; /9

i = Q/m = resulting acceleration without consideration of ball
deformation;

i' = Q'/m = resulting acceleration with consideration of ball deformation;

p = KS = o. 2 = distance from pole S (of the midpoint of the forces) from the

midpoint!K of the outer race;
= phase angle of the rotating or rocking motion;
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= phase angle of the shaft midpoint 0 when rotating around
midpoint K;

n = normal components of the acceleration i of the imaginary mass
m concentrated in shaft midpoint 0, passing through the mid-
point K;

t = tangential component of acceleration i;
N = mn = normal force in the straight symmetrical lines of the load

arc, which causes the ball deformation;
T = mi = the tangential force operating on the imaginary and circu-

lating mass concentrated at point 0, causing the rotating
motion and the rocking motion;

DT = 2R = diameter of the Thales circle through which the length of

the agitation is determined (Figure 23).
y = length of the oblique plane in the Thales circle (i.e.,

tangential or impact amplitude);
x = radial or crown amplitude of the tilting oscillation

(Figure 21);

a0 = angle of inclination of the oblique lines occurring at the

place of the rotating path with the force line in the case
of zero revolutions with a firm ball support;

a = the same angle of inclination with a movable ball support;
u = y cos a = "height of fall" in the Thales circle;

+ k = proportionality factor through which the ratio of the
diameter of the inner race to the ball diameter is deter-
mined; important for computing the Hertzian oblate
radius;

- K = proportionality factor through which the ratio of the
diameter of the outer race to the ball diameter is deter-
mined;

= friction of coefficient between ball surface and race
surface; 7

il = coefficient of friction between ball surface and cage (
surface;

p = angle of friction of the roller bearing;
M = rolling friction moment of the balls;
f = rolling friction spoke of the balls;
0 = diameter of the oblate circle of the ball.

IV. THE ROLLER BEARING AS PLANETARY GEARING

In the bearing with clearance, the shaft midpoint 0 can shift in any
direction relative to the midpoint K of the outer race. In a stable position
in the loaded state it can be imagined with the assistance of the symmetrical
arrangement that a hinged spoke between the midpoint K of the outer race
(with diameter D) and the midpoint O' of the inner race (with diameter d) is
just as long as the eccentricity e'. This relationship is clearly visible from
the somewhat distorted, geometric Figure 3 in which the bearing midpoint 0' of
two balls (ball diameter b) represents the cage or its center of gravity.
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Since the masses on the same axis, rotating around axis O' with angular
velocity w, are balanced, in the computation of the centrifugal force oper-
ating on radius e', the circulating rotational angle of velocity wk of the

center of gravity O' of the mass m must be considered. The number of
revolutions of spoke e' and of the cage can be determined by reflecting that
first the entire system, in which presumably all parts are locked in relation-
ship to one another, is allowed to rotate fully and then, after the re- /10
striction is removed, the outer race with diameter D is allowed to return to
its original position.

Id

0 !.

Figure 3. A Planetary System as an
Explanation for a Roller Bearing With

Radial Clearance

Rotational
Inner Ball Outer

speedmag.spoke race 0 b race
Imag spoke 0d 0

e, Od 0D

Full revolution of locked
+ 1 + 1 + 1 + 1

system
Outer race with 0 D returned D D
to original position with 0 + -- 1
immovable spoke e
The resulting number of D D
revolutions. d b

Thus the arm e' (and also the cage) in one revolution of the inner race
(diameter d) makes

8



I
S+D/d D+d

revolutions, i.e., when the inner race makes n revolutions, the number of
revolutions of spoke e' (and of the cage) amounts to

d+D (5)

Even if the distance of point 0' from point K isj extreme, this formula retains
its validity. In regard to ball bearings it is permissible to insert the
doubled mean diameter of the cage in place of (d + D); this approximate value /11
is the result of ignoring spoke e'

2Dk (6)

and the angular velocity of the revolving cage amounts to

ndk n d d O d (7)
30 30 d+D d+D 2Dk

Analogously the rotational speed of the balls, if the inner race makes n
revolutions, amounts to:i

1- (Dlb) d D-b D-b d D-b
1+ (D/d) D+d. b b 2 Dk b (6a)

V. AN AUXILIARY THEOREM

The auxiliary theorem derived here amounts to a rigid system of mass
points which rotates around an arbitrary axis in any homogeneous force field.

We assume that a plane, found at a right angle to any axis k, rotates
around this axis with an angular velocity wk (Figure 4a). Point 0 of the mass

m is located at a distance e from the rotational midpoint K of the plane /12
mentioned. Point 0 is the point of application of the specific weight Gland
of the outer force F, since the direction of this force F remains unchanged,
as a result of which the direction of the resultant P remains unchanged.

But since the centrifugal force C operating at point 0 changes its
direction, the result is a final resultant force P + C = Q, the magnitude and
direction of which is changeable during the rotation of the plane.

In Figure 4b we have presented the vector diagram for the forces oper-
ating on the mass unit, i.e., for accelerations

P
- -= a

(as resultants of accelerations G/m = g, and F/m =f),
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C

Q
m

Since the magnitude and direction of the vector a in the vector diagram are
constant and since vector c describes a circular line with radius c around
midpoint K , viz., in a plane perpendicular to axis k, the resulting

acceleration i is always a.generatrix of an oblique circular cone whose height
is just a and whose height of center forms the angle 10 with the rotating

plane. In the vector triangle which contains the angle X0, we find the mini-

mum value min and in another vector triangle with angle (1800 - X0) the

maximum value of the acceleration imax

Wk

0

I 0,M

Figure 4a. Midpoint of the Forces Figure 4b. Vector
(Force Pole) of the Mass Points of Diagram.
a Plane Which Rotates Around Any
Axis at Right Angles to This Plane.

Since the vector triangle OPQ (forces) and S K 0 (accelerations) are

similar in every position of point 0 of triangle SKO, we get

p e4: e:eo

for the polar distance, and with the assistance of equations (5) and (7), we
can write:

30 30 d+D 2 91 d+D 2  91
- --- -d+- I2Dkj (8)

Ok Inka n i ._Y4 d n d
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This is thus the equation through which pole S (midpoint of forces), oriented
to the rotating plane and remaining rigid, is determined. The similarity of
the mentioned triangle produces the principle that, as long as magnitudes a and
Sk remain unchanged, every resulting force of any mass point of the rotating /13

plane passes this pole S.

We choose the corresponding position of acceleration Ti as the initial
max

position in which to determine the magnitude of an acceleration i belonging to
any phase angle 4.

In triangle S M 0 side S M is also a perpendicular drawn to the re-

volving surface, i.e., S M 0 = 900, and therefore:

From the right triangle S M K we get

S,M,- A sin Ao,

and from the general triangle 0 M K it follows that

5M2' = P + KA + 2 KaVM' cos o ,
i.e.,

P = sin' A + P + KM ' + 2 K,M, coso9

Now since

K, M, = a cos ;o,0

then

12= i2 Sin' A + j2 + coe O o + .2a'- cos o0 co 9,,

i.e.,

r2 =2 + Z2 + 2 cos o co8. (9)

As initial position of the phase angle p was chosen the symmetrical plane
containing the angle X0 , and consequently equation (9) retains its validity in'

both rotating directions.

In connection with spindle bearings with a vertical axis, which are only
loaded by their specific weight, we get angle

1 d. 90"
and thus: AO g

2 - a2 = Z2 
(0(10)
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In connection with radial ball bearings with a horizontal axis (journal
bearings), if the bearing reaction occurs in a direction normal to the axis,
we get

o = 0

and thus
= + Z2 + 2qi cos

(11)

Since in practice the latter case is usually found, we shall restrict
ourselves in the following to this case alone.

It seems useful to summarize the relationships expressed in equations (8) /14
and (11) as follows:

(1) A single pole (midpoint of forces) S in space belongs to all points
of the plane.rotating about the axis; the distance of this pole from the
rotating midpoint of the plane is p = at 2 and the direction of this distance

is parallel to the acceleration vector a.

(2) The poles of two planes parallel to one another lie on one straight
line parallel to the rotational axis.

(3) When the increasing acceleration a approaches infinity or the
diminishing angular velocity approaches the zero value, a midpoint S of the
forces, in accord with equation (8), tends toward infinity, viz., in the
direction of acceleration a.

(4) In case the position of the mass point 0 in the rotational plane
changes with a rigid rotational axis k, the position of pole S remains un-
affected by the change in eccentricity e. But if the rotational axis k is
shifted parallel to itself, the polar distance is also shifted parallel to
itself.

(5) If the angular velocity changes during one revolution, and if
acceleration a still remains unaltered, the line of the polar distance p
remains in its position, and only its magnitude suffers a change inversely
proportional to the square of the velocity.

(6) When force actions occur in the main plane normal to the axis-6f a
radial ball bearing, the pole also.remains in this main plane, and at the same
time the equation (8) determining the position of the pole S contains the most
important data about the bearing in addition to the most important character-
istics of the operational states.

(7) When the rotating mass is not balanced on its own axis (see Part II
of this report), it is not the angular velocity wk of the rotation,)but the

12



angular velocity w of the rotating movement which is decisive in the compu-
tation of the pole distance p:

,a

P (12)

VI. THE NORMAL AND TANGENTIAL FORCES OPERATING AT THE AXIAL CENTER OF GRAVITY
OF THE SYSTEM IMAGINED TO BE ROTATING IN THE BEARING MID-PLANE

Although the auxiliary theorem introduced in connection with Figure 4
offers a certain insight in the most general cases, we would like to treat
here only the case most often occurring in practice in which the axis k is
horizontal and is affected by a perpendicular, spatial, external force.

For the sake of simplicity we have chosen for the analysis of the forces /15
operating on the bearing the symmetrical arrangement presented in Figure 4c,
since in this case the two bearings are subject to the same load, and therefore
we can satisfy ourselves with an investigation of only one of them.

Figure 4c. The Force Operating In The Bearing Plane

In the case of a bearing without clearance we must, prescinding from the
vibrations occurring as a result of the finite number of rolling bodies (see
sources [27] and [28]), calculate with a uniform rotation of the shaft with
the angular velocity w. During operation the resultant of the tensile forces \
occurring in the loose and tight belt streams on the pulley in a line normal to 5
the axis in space, but twisted, with the normal transversal forming the spoke
of the tilting moment developed. All individual specific weights (shaft and
concomitant pulley, shaft couplings at both ends of the shaft, inner races in
both roller bearings, both cages and both rolling body rims) operate in a
vertical straight line cutting the axis, the straight line being found in the
midplane of the system. The line of application of the resultant P, stemming
from the specific weight G and the operative tractive force F, is also twisted
in relation to the axis. If we now imagine at point 0 the two forces operat-
ing with one another in balance to be in a position parallel to the mentioned
twisted line, we are already clear abouf the position of the external forces
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loading the inner races and about the moments to be transmitted by the two
shaft couplings. Actually in the figure only the forces working at one bear-
ing position are presented. Pole S as a midpoint of the forces is found for a
bearing without clearance on the line of attack of Jthe force P affecting the
concentrated mass m thought of as being in the midplane of the bearing. Since
this time the center of gravity of the mass m is located in the rotation mid-
point, the centripetaliforces operating on the mass points of the system are
in equilibrium during rotation.

In the presence of bearing
clearance, but lacking a load
causing a tangible deformation
on the roller bodies, the shaft
midpoint 0, simultaneously the
center of gravity of the system
thought to be in the bearing mid-

plane and rotating with angular
_ I velocity w, is constrained to

follow a circular motion of

angular velocity wk along a

, circular line of radius KO
around midpoint K of the outer

K. 1 race, in accord with Figure la.

Our auxiliary theorem is
only temporarily valid for the
individual mass points of the
system in the sense of the
derivation. Here we wish to
show that the same theorem is

-- "also valid for the mass midpoint
of the rotating system. The

P proof is directed only to our

d particular case, namely, when
d)- the plane of the rotating system

is in a right angle to the line
Figure 4d. The Mass Point Substituting accommodating itself to the
for the Rotating System rotational midpoint K.

With the drawings in
Figure 4d we can state that the

system consisting of the mass points mi, m2... mi rotates around midpoint K. /16

We wish to prove that the vectorial sum of the forces operating on the
individual mass points

EQI=Q

lies on one line accommodating itself to the mass midpoint 0 and the force mid-
point S; the magnitude of the resultants is determined by mass Zml = m and

the acceleration i = a + c.
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We now wish to express the sum of the projections resulting from the /17
operating forces in the directions x and y and also the resultant of both
projections as follows:

Q ,sin , = P, + C, cos p, = a m, + EZo'mrcoj

In agreement with the drawings in the figure and with consideration of the
definitions it follows that

Em,= wn

and after introducing

E m rt cos 9 = m'l y, = myo

we get
we get Z Q, sin I = ma + m) my o .

In an analogous way we obtain the sum of the force projections in the
direction x

Q, sin = ok E m, r, sin 9, = mx o0

In this way the resulting force Q can be expressed as follows

Q = Vm'(a + ,yo)'+ m2 (, xo)' ,
i.e.,

With consideration of the position of the mass m concentrated in the
mass center 0

e2= X2

is valid for the eccentricity, and therefore

SQ= mVa+2ay 0o2O-+e k.

In the sense of the figure yO = e - cos and thus

In this way we have proven our statement about the mass midpoint, namely
with consideration of the similarity of triangles

AOPQ ' ASKO,
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the expression (e w2) is equal to the resulting acceleration, and thus pre-
serves its validity for the center of gravity of the rotating system on the
basis of the similarity of the proportion (8)

/ p:e= ::enk

The-external load is transmitted from the outer surface of the inner race /18
to the rollers, but the rollers also take on the reaction load from the inner
surface of the outer race, causing deformation of the rollers, and thus the
shaft midpoint is displaced into the new position 0', which at the same time
means a change in the theoretical rotational orbit (Figure 1). In the sense
of the already derived theorem, however, we can determine the resulting fo.rce
operating on the shaft center, i.e., on the mass midpoint, at any arbitrary
position of point 0'.

In computing the forces operating on the bearing, we would like to pre-
scind for a moment from the real rotational movement of the rollers and assume
that the shaft, the rollers and the cage affect a circling motion of rotation
nk as one unit in accord with equation (6) (as can also be demonstrated by

means of certain stroboscopic photographs, in certain cases this brings about
a sliding motion of the rollers).

According to the reflections in the second part of this paper, it would be
possible to bring the rotational motion of one roller about its own axis into
the computations. Nevertheless, in comparison to the total rotating system, _
its mass is, so to_say negligible, and in addition it is quite uncertain how
far the rollers really can perform the revolutions nb expressed in equation

(6a) because of the braking operation of the lubricant, and therefore to
include the specific revolution of the rollers in this consideration would be
a superfluous difficulty in computation.

When friction is temporarily left out of consideration, the line of
application of the reactive force exerted on the individual rollers through
the inner surface of the outer race as a compulsory path goes through the
midpoint of the rollers. Thus on the one side the resultant of all these
reactive forces and on the other side the normal force components N of the
force Q passing through the rotational midpoint K are found to be in equilib-
rium with each other. However, during the circular motion the tangential
component T also exerts its influence, and we shall discuss this below.

It can be seen from Figure 3 that the effect of the forces causes the
shaft midpoint 0 to make a circulating movement of radius KO' about the
rotational midpoint K of the outer race. We shall now examine the way in which
this compulsory revolution is affected by one deformation of the ball, and
whether and how the above described circulating movement proceeds or changes.
For this it is necessary to know the normal and the tangential components of
the force operating on the midpoint at one position on the circulating
rotational path: after all, the deformation is caused by the normal force com-
ponent and the(momentaneous)motion is produced by the tangential force com-
ponent.

16



Figure 5a shows the accelerations i operating on the center of gravity 0
and its components, normal n and tangential t, in its passage from position
4 = 0 to position 4 = T vectorially, and Figure 5b shows the same configuration /20
in the course of the other hemispherical area from T to 2T. The figure leads
to the determination that the components mentioned can be found correctly with
the help of a Thales circle if the acceleration vector a is chosen as the
diameter of this circle.

s,

K,

Figure Sa. Vector Diagram of Figure 5b. Position of the
Acceleration i and its Rectangular Same Vectors During the Second
Components During the First Half Half Revolution.
Revolution. Terminal Polar Distance.

' / /

/ I, A
/ .

,I \

I r

I 31 21r

Figure Sc. Acceleration Curve as a Function of Angle 4
(With the Circular Area Straightened Out).
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Depending on the magnitude of the relationship of vectors a and c, the
following cases can be produced:

Case 1. a/c > 1; p > e; pole S lies at the terminal

The components mentioned are produced from Figure 5a as follows:

Rf 4 coe + E (13)

= sin 9. (14)

Table of Individual cases:

0 I 1 + i+f 0

.L- -- "l o

After completion of the second half revolution, values are produced which /21
correspond to the symmetrical axis S K (Figure 5b).

With angle c straightened out we obtain the curves of the accelerations
as angular functions according to Figure Sc.

If we compare Figures 5a and 1 with each other, we can establish the
following: the (normal) deformation component operating on center of gravity O
reaches its highest value when it is superimposed on the radius SK, and if we
imagine the case where this component takes the position of a tangent from
point S to the circle of radius e, only the tangential force component would
be effective.

Case 2: /Bi >1; p =B/0 - .

This condition exists when either the acceleration a is exceedingly
largeor when wk in comparison to a is estremely small. If, e.g., only

gravitational is considered as a load, i.e., when a = g, then the equation for
the polar distance is

g 895
P = = k(7a)

18 n
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and if we accept the value of 1/4 V/min for nk, we get

p= d95 X 16 = 14,32 km .

If by chance the eccentricity e amounts to only 49 um at the same time, the
ratio

pe = 3 108 .

is produced. In such a case the Thales circle constructed around vector a
changes into a straight line constructed through point Kv and directed perpen-

dicularly to line a, and the extremely narrow triangle formed from vectors a,
c and i turns the centrifugal acceleration c, in comparison to a, into a tiny
magnitude (the case of the so-called zero revolution), negligible in respect
to a, and thus

aI= a

With the torque angle 4 we get the normal acceleration component
(Figure 6a)

)o = 9 peos (13a)

and the tangential component

=a sin .

t

Figure 6a. Accelerations. Figure 6b. Acceleration Curve as

/. , II " i \

Figure 6a. Accelerations. Figure 6b. Acceleration Curve as
Nonterminal Polar Distance. a Function of Angle 4 (With

Circular Area Straightened Out).
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Special cases: /22

20 i 0

5 0

The forces are presented in Figure 6b with the leveled angle p.

Case 3: a/c = 1; p = e; Pole S lies on the circular path of the circling
movement.

In Figure 7a we can see that the Thales circle, the middle point of which
according to the definition lies at the bipartition point H of the acceleration
vector a, touches the other circle with radius e at point S from inside.

V

According to this equation (11) for acceleration i takes the following shape:

S= 2a2 (1 + co 'p);

2 1--cos 2e= = 2a 2 2 =2co.-i
2 2 (15)

which moreover corresponds exactly with the geometrical relationships of
triangle S 0 0 in Figure 7a.

v v vO

The normal component of i is /23

Sa +a cosqg -= (1 + coS 9) ) (16)

and its tangential component

.l = sin ..

Special cases (see diagram in Figure 7b):

0 1 25 Fi .0

S-1 0 0 0
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Figure 7a. Accelerations With
the Pole on the Rotational Path

X "I
2/.

Figure 7b. Acceleration Curve as a Function of Angle
(With Circular Range Straightened)

Case 4. a/c < 1; p < e; Pole S lies inside the circle of radius e.

In Figure Sa the position of the acceleration i could only be conceived of
as being inside angle 2p. In Figure 7a this limit was 2i = rr; according to
Figure 8a discussed below acceleration i can make a complete revolution up to
2n .

The normal component of i is

+ a C89 
(17)

and the tangential component is:

Sa- sin q.
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Special cases.r: _

O 1 -- i -- 0

0i
T o

Figure 8a. Accelerations. The Pole
in the Center of the Rotational Path

a 7

/ ,

Figure 8b. Accelerations as a Function of Angle
(With Circular Range Straightened Out).
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The usual diagram for accelerations as angular functions can be seen in
Figure 8b. With an increasing number of revolutions pole S keeps approaching
point K, but will only reach this point K in an infinitely large number of
revolutions.

For the purpose of symmetry the vector a in this section is found in every
vector diagram on the central vertical lines. This type of presentation is
also to be maintained for the force diagrams. But for the sake of truth it
should be mentioned that the position of the pole distance KS = p can take on
any arbitrary direction according to the actual operating relationships.

VII. DETERMINATION OF THE LOAD ARC

On the one side the pole distance p and on the other side the magnitude
of the load arc caused by the deformation are decisive in producing the move-
ment phenomena of the rotating mass with the center of gravity 0 in the shaft
middle. It should be noted that the pole distance is not dependent upon the
rotating mass m; according to equation (8) this distance is a function of the
number of revolutions nk, acceleration a, raceway diameters D and d (at the

outer and inner race), while the load arc 2C, according to equation (4), /25
depends upon the following magnitudes:

- on eccentricity e,
- on number of balls z = 180 0/y,
- on deformation settling s,

and in connection with this latter magnitude the load arc 2t is a function of /26
the force Qmax = mi, thus a function of the rotating mass m at the same time.

Eccentricity e is determined only by measurements, while settling s can
be determined by measurements or by computation.

1. Determination of Bearing Clearance by Measurements

This determination takes place, for example, by applying the process
recommended on the part of the Swedish Ball Bearing Factory [18].

The accuracy of this process is completely satisfactory. In Figure 9 we
see the apparatus used for this. At one end the shaft has the weight G.
Accordingly the bearing is stressed by a downward directed load consisting of
weight G and part of the weight of the shaft itself. The measurement dial m is
attached to the bearing housing in such a way that the tip of the instrument is
mounted on the shaft as close to the bearing as possible; the hand of the
measuring dial is read. With the help of a spring scale r, the shaft is loaded
in phases. During this process the position of the measuring instrument is
read at every load and recorded. The load is raised until its magnitude
reaches the estimated highest value of the original downward directed load.
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12
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SI -- kp

Figure 9a. Load

Diagram for the

Experimental Determi-

Figure 9. Apparatus for Determining nation of the Bearing

Bearing Play by Measurements. Play.

The curve to represent the position of the instrument hand (the deform-

ation values) is plotted in the diagram as a function of the spring scale hand

positions, from which the bearing clearance can be immediately determined.

Thus, for example, it can be determined from Figure 9a that the spring action

of the shaft is directed downward from 0 to 30 kgf and upward from about 35 to

60 kgf. These two segments of the mentioned curve are two lines almost exactly
parallel to one another; in regard to the small loads involved here, the spring
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action can be understood as being only the phenomenon corresponding to the
shaft deformation. For the curve segment of values 30...35 kgf, we can assume
that the bearing here is unloaded, because these values correspond approxi-
mately to the sum of the load weight and the specific weight, so that the jump ]
in the line is equal to the bearing clearance. Without such a bearing clear-
ance, the curve would take the shape of an uninterrupted straight line (between
0 and 60 kgf). Logically the bearinig clearance can be read from the ordinate
axis, if the upper sggment of the line (the broken line in the figure) is
extended backward.

This method of measurement is conformable to the definition given in
Hungarian Standard MSZ 7980, according to which:

"By the term 'radial clearance' of the ring-oiling bearing is understood
that distance which corresponds to a radial displacement of the inner race
made in relation to the outer race, when the'bearing is alternately subject to /27
two equally large measurement loads operating in opposite radial directions,
with regard to the most extreme positions." /

In the case of an even number of balls and with a race displacement along
an angle dividing line of the partial angle, the measurement result is equal
to double the eccentricity, i.e., 2e. But if the number of balls is an odd /28
number, the measurement result is equal to the sum e + h = e(l + cos y).
Naturally distortion of the shaft should be prevented during measurement.

2. Determination of Settling by Computation

Settling s, i.e., the displacement of the inner race measured in the
direction of the normal force,, is identical only in a mobile position ,with thel
oblateness 6 of the ball found in the center of the load arc. On the other
hand, in the case of a stable position the center of the load arc lies on the
bipartition line of the angle between two neighboring balls, and this is at the
same time the position of settling s; the value of s can be computed according
to equation (3) from ball deformation and from the angle formed by the midline
of the ball and the midline of the load arc. According to equation (4) the
magnitude 2C of the load arc can be computed with a-knowledge of settling s.

a) In the case of two load bearing balls the load of only one ball
amounts to

N

2 cos Y (18)

and the oblateness ]61 of the ball according to the Hertzian equation [16] is

IN,
i.e., =E # /2d/2
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14.k)I' 2 j (19)

where "b" = ball diameter;
+k = d/b = ratio of the inner race diameter to the ball diameter.

By introducing the above value of N1 we get

l b 2 ' 1 k'a-II

6 = coey= 1,23 N coevE ib k

In the sense of equation (13) the load at any phase angle is

N = ma = nu cos + me = P cos + me = c P oj ,

and therefore the oblateness at phase angle 4 is: /29

Pcosq~+C2 2 1(+k
S= s co B y = 1,23 2cos yE ' k (19a)

Maximum oblateness occurs at phase angle q = 00 and is here

Na 1 Q= = P+ C+

following which

max 2 1+k (19b)6max = S COS y = 1,23 2
2cosyEI b 1k

and

1,23 Qm ax 2 (1+k)
cosy Ecosy 72kb ((20)

and in addition with any arbitrary angle p and the normal force N coordinate
to it, we get:

Qmax (20a)

With a large number of revolutions the value of Qmax is to be modified in the

sense of equation e' = e + s, and according to equation (4) becomes
e+ cos

cos mx = ,

e+ 1,23 Q'max 2 1+k (21)
. cos 7 E cosy 2kb
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As long as the magnitude of the load arc 5 remains within the limits

v < Cmax < 3yI

there are two load bearing balls.

But as soon as the value %max > 3y is reached, the load is borne by two

pairs of balls.

b) The number of load bearing elements is any even number. In this case
the computation procedure is formed somewhat differently from the process
according to Stribeck for play-free roller bearings with an odd number of
balls [1]. In -a play-free condition the case of an odd number of bearing balls:
can also be valid as a.stable condition; but if there is any clearance, in a /30
"circling" movement the stable condition with an.even number of bearing balls
is much more probable and this is why the case of an even number of bearing
balls is most obvious.

With several pairs of bearing balls, the deforming normal force is

N = 2(N, cos y + Ncoe 3y -N cos5y + ...) (22)

where the individual forces N1, , N N3 ... of the series designate the normal

forces operating on the individual balls of each pair of balls.

With the value
1800

is valid according to.(3) - =-= s cos ,

b == scos3y,.
, = scos 5y,
" ............

and

.62 COS36, cos 3 ,

63 _ cos5P
6 C1 cos '

. . . . . . . . _................
In addition according to (19)

27=
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is valid, and consequently

_62 3/2 coB 3y 312

N, \. '2 = .N co, 5 _ ,

63 coy

from which
cos 3y 312 ( sY

2N, + cos 3V + co cos + 5. .i

or

N-_2N o, +[1 o-s3 y 12 coesy 5y I
=o Cc,08 + Coyi),i ...o + (23) /31

and therefore

N 1 =N
2 o +.cos 3y 12 [+ cos 5yV i . y cos (2n- 1) (24)

co 8 cosy cos y

Thus with a knowledge of N1 it is also possible to compute the ball load

in other pairs of balls. By using an index n for n pairs of loaded balls and
g

by introducing the designation "A " for the polynomial between the brackets in
ng

the denominator of equation (24), we get

cosy y (25)
N2  2 cos 'A

for one outer ball with two pairs of bearing balls, and particularly in the
case of 2n bearing balls the load of one outer ball (of the n -th pair) is

g g

N'[cos (2 ng -1)y ]312
N, = -- cos y An7 (26)

where the boundaries

(2n -- )y < C < (2n + I-)

are fixed for the half load arc.
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In order to find the angle r, it is sufficient to gradually compute the
value of the load from one ball N1 according to equation (24) for the increas-

ing number of loaded pairs of balls, in order in this way to determine the
coordinate value of max according to equations (20) and (21), and at the same

time the number of effective load bearing pairs of balls. The criterion that
the angle assumed in equation (24) coincides with that computed according to
equation (21) is sufficient to show the correctness of the computation.

In order to simplify the computation, we have figured out individual
values for

'N
= 2 cosy A,, (24a)

and are publishing these values for a series of z balls and n carrying pairs
g

of balls in the following table:

TABLE OF VALUES OF Ang AND N/N1 AS FUNCTIONS OF NUMBER OF BALLS z /32

AND NUMBER OF CARRYING PAIRS OF BALLS n (= 2n CARRYING BALLS):
g g

The following designations form the basis of the computation of the values
in the table:

r + (cos 3y 'so' ( cos 57 *Is cos (2n - 1)yAnt, ++ + 5 + .+ co (2n
cosy 1 cosy cosy

N = the normal component of load Q which reaches the maximal value Qmax at

S= o;
N1 = the load of one ball in the average pair of balls.

No.of Half No. of Force Magnitude Half
Balls Partial load Ratio A Load Arc

z Angle y bearers N/N 1  g
2n

6 300 2 1.73 1 300
9 20 2 1.88 1 200

4 2.27 1.335 600

10 180 2 1.9 1 180
4 2.48 1.305 540

12 150 2 1.94 1 150
4 2.85 1.457 450
6 3.2 1.648 600
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TABLE (continued)

No. of Half No. of Force Magnitude Half
Balls Partial load Ratio A Load Arc

z Angle y Bearers N/N1  g
2n
g

15 120 2 1.96 1 120
4 3.18 1.623 360
6 3.54 1.807 600
8 3.55 1.810 840

18 100 2 1.97 1 100
4 3.42 1.735 300
6 4.33 2.196 500
8 4.)47 2.267 700

20 90  2 1.976 1 90
4 3.5 1.777 270
6 4.38 2.214 450
8 4.65 2.355 630

24 70 30' 2 1.98 1 70 30'
4 3.65 1 1.842 220 30'
6 4.79 2.418 370 30'
8 5.38 2.717 520 30'

10 5.57 2.808 670 30'
12 5.58 2.814 820 30'

30 6 0  2 1.99 1 60
4 3.76 1.89 180
6 5.09 2.594 300
8 6.11. 3.074 420

10 6.8 3.342 540
12 7.3 3.367 660
14 7.7 3.387 780

The data of the above table are presented in Figure 10. Worthy of note
is the circumstance that the average pair of balls in a bearing with few balls
is loaded greater than in another bearing with more balls, viz., even with the
same number of balls inside the load arc 2C. Thus, for example, when the load /33
inside the load arc is carried by six balls, the normal load force NI, strain-

ing the average pair of balls, is equal to N/3.54 insofar as 15 balls operate
in the bearing, while at z = 30 the ratio is N1 = N/5.09. This is related to

the magnitude of the load angle, at z = 15, 2 = 1200, while at z = 30 this
angle is only 600. In other words, load distribution is more uniform in a /34
bearing with more balls, because the angle of inclination of the outermost
bearing balls to the normal force is smaller.
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Figure 10. Ratio of the Normal Components of The Load
To The Pressure On One Ball Of An Average Pair of Balls
As A Function of The Number Of Bearing Balls With
Different Total Numbers of Balls.

It will be demonstrated below that the magnitude of the load angle, not
only in reference to load distribution, but also in respect to the expected
vibration phenomenon, is an important factor.
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VIII. THE IMAGINARY CIRCULAR REVOLUTION OF THE SHAFT MIDPOINT

From equation (20a) we get the value of settling s. caused by the normal

force N operating at any angle 4. If we imagine the case where the shaft mid-
point 0 -- under compulsory operation (e.g., by a rocker arm rotating around
point K) -- effectively describes the full circumference corresponding to the
phase angle q, where the normal force N freely exerts pressure on the mass
point 0, equation (20a) would be the correct formula for computing the circular
revolution.

It is not difficult to describe this path geometrically. Namely, if we
introduce the designation

Qnax

N

equation (20a) can be written in the following form:

s = st V = conest (20b)

On the basis of the vector diagrams according to Figures 5a, 6a, 7a and 8a,
the values v can be constructively determined for every individual value of the
angle of torsion-, plus the values s by means of the well-known Brauer'pro-
cedure.

In this sense the auxiliary angle a = 450, assumed in Figure 11 on the, i
basis of the equation

(1 + tan()=. (1 +tan

is valid for angle B:

1 + tan = 22/3 = 1.5874

and tan B = 0.5874; B = 300 26'.

Corresponding to the geometrical construction we have

l82 1

and /35

32- -tan0=s -- 1,
'Y1  V1
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plus 1 tan= 1 tn = (1+tana .,
82

and

=I+ tan ac,

from which it is clear that the geometric construction effectively corresponds
to the conditions of equation [20b], because

1 . V2 1213

i.e.,
'2/3 SA2/3 _ constSIP1  = SZY = • • . = = conet .

If now a radius with the phase angle ( is drawn through point K and the dis-
tance s marked off on this radius in the direction of the normal acceleration
n (measured from the point of the circumference with radius e), we get the
points of the circular rotation (naturally the increasing movement in the
direction of point K has a physical meaning only under the effect of a residual /36
stress). Computation of a single value s is enough for geometric construction,
because the acceleration values n can be taken from the sector diagram.

sisi

Figure 11. Constructive Determination Of The
Rotational Path According to The Brauer Procedure.
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However, it is superfluous to
_ s construct the circular path completely

in this way. It will be shown below
that the mass point 0 never follows
this circular path: only a small arc

sector is free for mass point 0.
P. Accordingly the theoretical circular

path should be replaced by another
circumference, namely of such a type

L that this replacement line completely
S " follows the characteristic points of

K - the theoretical line. In order to
ascertain the vibrations of the shaft,
we must determine the radius e' and the
midpoint K' of this protracted circle
with the mass of the pole distance p

N remaining unaltered, because according
to equation (8) this magnitude depends

*z .5 only on acceleration a, number of
rotations n, and raceway diameters d

o' and D, while the pole distance shifts

Figure 12. Protracted Circle For on its own line into position K'S'.

The Rotational Path (Points 0' and
T Are Elements Common to Both Cir- terminal

cumferences).

In Figure 12 we find the circle
with midpoint K and radius e; this
circumference is the rotational path
without a load, i.e., without deform-

ation. As initial data we here assume pole S, point of contact T of the /37
tangents drawn from point S, and the settling s caused by the deformation
occurring. Now the above defined protracted circle with its midpoint K' and
diameter e' are to be determined in such a way that the circumference is to
pass through point 0' and the point of contact T: this assumption fulfills the
above requirement according to which, in agreement with vector diagram Sa,
maximum settling should amount to-the mass s at point 0' and deformation should
disappear at point T.

The designations according to Figure 12 should now determine the unknown
magnitude

KK' =' 

because the other unknown is already produced from it as
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It follows from right angle LTK' that:

j 2 + (w + ,,') = = K'O'7 = (e + - s'),

j + , + 2wx'2 + z'2 = e2 + 2es + s2 - 2ez' -'Is' + Z',

2s'(w + e + a) = (e + s) - ( , + w)

Now the figure shows the theorems: /38

P + 2=,8 e
and

w+e+s =9,

and thus

(e +_s)2e= O'T',

and 2z'9= (e +)2-.e2= O'T',

are valid for the length of the tangents O'T'0, and accordingly the simple

construction process will take place as follows:

An arc is drawn with midpoint 0' and radius q = O'L, and the point of
intersection M of this circumference with the other circle of radius e is
found, and in addition the point of intersection N is produced by drawing the
line MO'. For this:

O'N

2
is valid, and

, = (e+s) 2- e2 2es+s

2q 2(w+e+s) (27)

where, with reference to right triangle SKT:

e (28)

and P

e'"e +s- Z'.
(29)
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The sImp.le geometric consideration leads to the result that the midpoint K'
on line O'S is found by drawing the bisecting normals O'T as a point bf inter-
section.r

The protracted circle discussed remains as an overlapping line for the
case of a high number of revolutions with small deformation. However, if the
number of revolutions is small and deformation large, the protracted circle
according to Figure 13 is useful. This circumference also passes point 0 and
the tangent drawn from pole point S' touches the other circle of radius e at
the same time.

The deformation z', through which point K' /39
is determined, can be ascertained as follows on
the basis of the geometrical correlations:

s S'O' : S'K' = S'O : S'K, j
SI i.e.,

° L (s + e p - ') :p = (e + p - ') : (p - s

V .and therefore

0- +e +'( e+. sp 0.
Two circumferences pass through point 0';

both are characterized by the tangents which are
I likewise drawn from point S' and touch the third
_ . circle (with radius e). We are interested in the

one of these two variants whose result is the
smaller z value, i.e.,

Figure 13. Protracted
Circle to the Rotational
Surface (Point 0' and . p+e+s-Vp+e+s)-4ps
Tangent S'T' are Ele- z"= s) (30)
ments Common to Both
Circumferences).

and

e'= e + s-z',

where according to equation (30), when s = 0, z' also = 0, and e' becomes
equal to e.

Case 2: ;/c > 1; p = a/wi m.

Here with = 00 and 4 = 1800 the absolute value of the normal force
equals P both times; it follows from this that the circle whose radius is
equal to eccentricity e can be displaced parallel to itself.
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Case 3: a/c = 1; p = e. The pole is on the rotational circumference

The radius of the protracted circle assumed to be at the position of the
rotational curve and adjusted to it amounts to:

2e + s
e' = 2 (31)

where displacement amounts to:

z' = - (32)

But it is clear that this protracted circle cannot be accepted in the case
where the value s is too large in relation to e. In regard to the invariable
pole distance p, the radius of curvature of the rotational path at the upper
zenith should be equal to "e". Thus the right path according to equation (20b)
is produced.

Case 4: a/c < 1; p < e of pole S is within the circle of radius e /40

In such a case a distance sif develops between the imaginary rotational

path and the circle of radius e in the upper zenith also; for this equation

(20a) produces:

s P-C 213

as a value of the deviation at the upper zenith point. From here we get

2 (33)

and in addition displacement of the rotational midpoint:

KK' = z' s-si (34)
2

It should also be pointed out that an acceptable protracted circle can be
considered permissible in place of the imaginary rotational circumference be-
cause in general only a small arc sector takes a part in the vibration
phenomenon.
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NB: If the pole distance p is large, the circle of diameter

e' = e + s

can be accepted as the protracted circle in the environment = 0.

In order to preserve an absolutely consistent attitude, it should be noted
here that the individual radii of curvature are obviously different on an oval
rotational path. We know very well that the line of the pole distance must
pass the midpoint of curvature; if we now analyze the displacement of midpoint
K with the necessary theoretical severity, we must recognize that a deformation,
which also changes under the effect of variable normal forces at different
phase angles, may at times cause the formation of an oval rotational path, and
it is also conceivable that the change in position of the pole distance can
take place not only along its own straight line, but -- as a consequence of the
nonuniformity of the radius of curvature of the rotational path, also as a
displacement parallel to itself. Nevertheless the magnitude of the pole
distance also remains unaltered in such cases. But we shall see that other
vibrational movements can precede Ithe phenomenon in question, and that a
"jumping around" of the pole as a result of changes in the radius of curvature
is probable only under great loads and at high rotational speeds.

IX. THE CONFIGURATION OF THE EFFECTIVE FORCES /41

From the discussions presented so far in reference to the rotation of a
rotating system balanced exactly on its own axis in a roller bearing mounted
with clearance, we have learned the following mechanical magnitudes which
affect the shaft midpoint; the path in which the shaft midpoint circles under
the effect of the deformation of the balls and the approximate circumference of
the orbit mentioned.

Now we shall investigate what kind of movements results from the fact that. /42
the effective forces likewise change when the angle of rotation is changed.
Here we face two possibilities:

- Development of motions withoutl regard for friction;
- Development of motions with consideration of friction.

Case 1: The pole distance is greater than the eccentricity.

a/c > 1; p > e; Pole S at terminal distance.

In Figure 14a we see four bearing balls in the position 4 = 0, the
corresponding half sector angle E = 3y, where e' = e + s - z', and we have a
configuration .in which the vectors of the outer balls A and B touch the circle
of radius

,' = e' sin
(35)
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During the rolling
motion of the four bearing
balls, shaft midpoint 0'
experiences a displacement
along a path of eccentricity
e'. It may happen that while
shaft midpoint 0' moves along

a the rotational path around
point K' the normal component
is reduced and therefore the

/ two outer balls are loaded,
as a consequence of which the
base circle radius p' is also
shortened now. The reason
for this is that the magnitude
of the base circle diameter

. .depends greatly on the de-
formation caused by the load

a-- and on the number of the

b bearing balls.

On the presumption of a
negligibly small load and

W e' with two balls in path con-
tact, we get

In the sense of equation (35)
the value p' increases pro-
portionally to sin 5, and at
2 5 = 180, if the vectors of
the outer bearing balls
appear also as tangents of

Figure 14. a) Load Bearing Group of the circle of radius e', we
Balls at = 0 At Terminal Pole Distance. get
b) The Same Group in the Tilting Position
When 4 = 9 + *.

Onax e'8 in e'. (35b)
2

In the case presented in Figure 14a the following motion phenomenon are
possible:

a) While the inner race rolls on the four bearing balls, the shaft mid-
,point O' describes a circular motion along a circle of radius e' until finally,
in the given direction of rotation, the vector of the "last" bearing ball "B" * /43

39
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passes the force midpoint S'. This new position B1 of the ball can be found

in the following way:

A tangent is drawn from point S' to the base circle (of radius p'). This
line intersects the midcircumference of the ball rim in the new point B1 and

the same straight tangent intersects the eccentricity circle (of radius e') in
the new shaft midpoint 0'1

Figure 4b shows the new configuration in which balls A and B accept their
new positions Al and B . We see that not all four balls can continue to be

loaded, since now the "last B" ball leaves the operating line S'O' 1 of the

force, and finally the ball "tilts" around point B1 from its position in 0'i,

i.e., "backwards". In this way the entire ball rim performs a tilting motion,
that is of such a sort that ball C of the next group of four describes an arc
sector with midpoint B1 at the beginning of tilting, but ball C immediately

leaves this path because ball B in the meantime is forced to change its
position. Tilting of the shaft midpoint O'1 also begins along an are, but this

movement also suffers an alteration, likewise because of the effect of the
forward motion of tilting center B. In any case it can be determined that
after the end of the tilting motion the shaft midpoint 0 again assumes its
position on the eccentricity curve of radius e'.

The initial position of the tilt motion can also be simply computed in
the following way:

According to the designations of Figure 14b the theorems

1 + ~(36)

and

0' =psinV • (37)

exist for the triangle S'K'O'1. From these formulae it is possible to deduce\

the angle i in order to determine the angle of torque p (see equations (8) and
(35)) :

sin (e s~s zs)sin n2 d 
p 91 a D+d (38)

Equation (19a) is suited for recognizing whether the balls with a given
load are unloaded during torque. After all, if the reduction in load leads to
unloading balls, the following phenomena are involved (according to equation
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(38)): as a result of the reduction s angle p is reduced, and suddenly angle C
also, causing the phase angle q to become smaller, which means that the tilting,
occurs even earlier, i.e., before the midposition is reached.

After tilting the shaft midpoint recovers its circular orbit on the path /44
of radius e'.

b) A load case can occur in which the half sector angle of the bearing
ball is almost equal to 900, and thus it happens that the "last" bearing ball
can no longer leave the operating line of the pressure during the circling
motion of the shaft midpoint 0'. In such a case, as already mentioned, the
base circle radius p' is nearly equal to the eccentricity radius e', and
therefore no tilting can occur under such a load.

From the literature [19] we learn that in a friction bearing with clear-
ance, during rotation, the shaft midpoint relative to the rest position
describes a "circling motion" in the direction opposed to the rotation, at
which time the tangential component of the effective force is equal to the
frictional force [20]. On the other hand in a roller bearing with clearance
the torque of the shaft midpoint under the;effectj of rolling is equal to the
direction of rotation, leading to a "rocking" motion when it has a vibrating
load.

In those cases of load in which "tilting" can occur, the forward slip
mentioned has an influence on the beginning of tilting or may at the same time
cause rocking.

On the basis of equations (13) and (14) angle P, at which backward rocking
occurs, can be computed; for this purpose the value of the coefficients of
friction p between balls and path should be accepted as a symbolic magnitude
and at the same time as a basis for comparison (Section XI contains an
exhaustive discussion of this matter).

At the moment when

'pN < T,

the shaft midpoint can rotate backward, and thus the limiting case is des-
cribed by the designation

1pm(acosp + e' Co) = msin ,

or by

a sin -pt a cos = pe' co

or expressed by 2
8in --- cos e' o 4
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With consideration of equation (8) after the introduction of the frictional
angle p, i.e., after introducing the statement p = tan p, we get

sinfcos#-coe sin _ sin ( -) e'c2 .e'
'=- (39)sin Q sin L a p

From this it follows that in our case - p < p, or /45

S< 2p

and in consideration of equation (7) we get the formula for determining 4:

;sin in = # n2 2 (39a)91 a D+d

for which we get the value e' from equation (20) and the value z' either from
equation (27) or from equation (30).

Worthy of note is the phenomenon which was observed in connection with
friction bearings of low revolution [11]: under certain conditions jerky
motions "backwards" also occur here, and often cause disruptive vibrations.

Case 2: The force midpoint in infinity; a/e > 1; p = /w -/ m.

If under certain conditions relating to load the number of revolutions is
very low, this is a special variation of the case under preceeding point 1.
A pole position in infinity has the physical meaning that the force vector
follows along parallel to the shaft midpoint 0 into every new position.

a) Figure 15 shows two load bearing balls, and thus the half angle of
load amounts to E = y. The straight lines which are drawn from the pole point
S - S' in infinity as tangents to the circle of radius e can only touch the
other circle around midpoint K of radius e' if the original eccentricity circle
is displaced parallel to itself along the settling distance s in the direction
of the force vector P. The shaft midpoint displaced into position O' as the
result of deformation will only circle the loaded ball B as long as this ball,
along with the shaft midpoint, reaches the operating line of force P or
overtakes it. With the position of the shaft midpoint at 0'1 and with the

ball in position B1 (in the designated direction of rotation) the entire ball

rim and also the shaft undergo tilting at B1 . After the tilting, if ball A

moves into the new position Al, the vector of this ball no longer appears as

the tangent of the base circle (of radius p'). Instead of this vector we find
the one of ball B1 and instead of the vector of B, we find that of ball C,
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which now adopts position C1 as a bearing ball (Figure 15a). Since ball C

suffers deformation immediately after tilting also, the displacements occurring,
are not designated by the half load arc r, but by the half load angle 5.

IK

A,
C,

B,

Figure 15. Midposition of a Bearing Pair of
Balls (c = 0), And Its Tilt Position ( = y)
At An Infinite Pole Distance.

a

Figure 15a. The Following Pair of Balls After
the Change.
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Since under such operational conditions /47

0=o

the phase angle according to equation (36) in the first moment of starting of
tilting is:

S= 5. (40)

b) We can compute the angle , at which the back rocking begins, from a
knowledge of the angle of friction p, of the normal acceleration.n (according
to 13a) and of. tangential acceleration (the expression of which according to
(14) also remains valid for this case). Now

and in the limiting case

/a cos = j sin ,

i.e.,

tan f = / = tan#

and

= p. (41)

Case 3: a/c = 1; p = e, Pole S lies on the rotational path.

In Figure 16 only the following geometrical magnitudes are presented:
for the case without deformation the rotational path of radius "e"; for the
case of deformation, thus with a changed rotational path (which however is not
drawn in the figure), the protracted circle of radius e', which circle sticks /48
both to the rotational path mentioned and to the rotational path changed, the
base circle of radius p'.

a) The magnitude of the phase angle c at the moment tilting begins can
be determined by simple consideration of triangle S'K'O'1 with the same legs;

here the following equations are valid:

p' = e' sin p = e' sin 5, (42)

and the following is valid for the mentioned value of the phase angle

= 2C. (43)
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b) In order to determine the
phase angle at the moment backward

S .vibration begins, equations (16) and
(14) are also valid this time, i.e.

Sa U(1 + cos ) = 1 sin ,
or

Kor sin P-p cos p
S.....

With the well-known definition

. p = tan e i/

we get

sin cos -- cos sin
sin e

Figure 16. Rotational Path,
4 = 4. (Pole on the Rotational
Path).

sin ( - ) = in ,
i.e.,

= 2 .

Case 4: a/c < 1; p < e. Pole S lies within the rotational path of
radius e.

In this section in speaking about the first three cases we have followed
the procedure where the force midpoint S beginning from its position in
infinity moves inward until the eccentricity circle is finally reached. But
it is much more complex to accurately observe the phenomena when the pole
accepts the position within the eccentricity circle (of radius e)or even
within the base circle (of radius p'). Precisely in these cases the operating
considerations require the most exact determinations, the importance of which
must be particularly underscored because of the heating to be expected in the /49
high revolution area and because of the emphasized need for a well founded
bearing clearance.

It may appear strange that the last tenths of millimeters on the path of
the "wandering" pole must be found with tedious deliberation as the stretch
from the position (corresponding to the so-called zero revolution) infinitely
inward to the eccentricity circle. But we must not forget how extreme re-
quirements are on surface properties and how narrowly the involved tolerance
ranges are measured, for which the prescribed figures shift by a few pm, in
contradistinction to which radial bearing clearance, even for roller bearings
of average size, may reach a mass of 1/10 mm [14], thus sometimes 100 times

greater than the irregularities of the surface. We cannot avoid a comparison
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with a cross-country vehicle called upon to master ditches of 8-10 meters
depth in addition to clods of earth about 8-10 cm in size.

a) With an unchanged load, but with increasing revolutions, the pole S
approaches midpoint K, a prerequisite of tilting (Figure 17) is

where the value of 4 can be ascertained from equations (21), (35) and (37). In
the three cases discussed above a position could always be found in which the
normal component of the load Q became zero (see Figures 5c, 6b, 7b). Now in
the previous case (Figure 8b) the normal force components never disappeared,
and therefore the question rises as to whether . limiting position could be /50
found in which the condition described above as necessary for causing tilting
is not sufficient. We shall now prove that such a position actually does occur
if the pol epoint just reaches the range of the base circle (of radius p').

In Figure 18 we have presented
the load bearing group of balls in the
position at which the shaft midpoint
is found at point 0', when at the same
time with ball B functioning momentarily
as a tilting point, the distance BN is
assigned as a momentary spoke to the
outer force P and the distance BN to

" - the centrifugal force. In the course
of continual rotational movement the
spoke of the centrifugal force remains
unchanged, but the spoke of power P
keeps increasing and reaches its high-
est value in the position of B when

' • radius O'B' forms a right angle with

force P.

Figure 17. Rotational Path(Pole Inside The Rotational If now the largest movement of(Pole Inside The Rotational force P is still smaller than themoment of the centrifugal force, no
tilting can occur. In this position
the momentary equilibrium can be

expressed as follows with the designations of Figure 18:

PRk = CRk sin 5.

Since now

P = m*a

and

C = me' = me d
.946 D

46



we can determine the limiting number of revolutions nh at which tilting

can no longer occur; the equation is then:

=, 9,D+ = 9,55 I (45)

c / In agreement with equation
s',N S (8), the critical number of

- 9 revolutions occurs in the event
that

P = p'

But now the value p' obviously

C \increases with the number of
balls, and respectively to de-
formation, in the sense of the

.1 'equation

p' = e' sin e. (46)

In other words a larger deform-
ation is related to a drop in the
limiting number of revolutions.

Figure 18. Case of Limiting Revolutions
(Polejon Circumferences of Base Circle b) The normal force and the
of Radius P). tangential force are also expres-

sed by equations (13) and (14) in
agreement with case 1. Only then
we have a/c > 1 and here a/c < 1
is valid.

According to equation (39) we can write:

sin e P '

from which it follows that

S> 2. (47)

We wish now to consider the case of p = p' in more detail; with equations
(35) and (39) we have for this case:
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sin~(~ -. ) _" e'_ 1e
sin p p sin sin J

Angle 5 moves between y and 900, i.e., /52

sin' (-) = sin 0 .. . .

In the limiting case of E = 900, = 2p is thus in agreement with (44),
since when 5 = 900 we have e' = p' (according to_equation 35) at the same time.
When we have the limiting case 5 = y before us, T can be unambiguously de-
termined, where this T value (according to equation 47) is greater than 2p.
This is unmistakenly related to the fact that as p continues to drop the
occurrence of a peripheral movement becomes more and more probable.

In a roller bearing with clearance we have discovered three kinds of
vibrational movement possible for the rotating mass balanced on its own axis:
tilting, rocking and, in case the polejis shifted inside the base circle,
peripheral movement. But up to now we had not said anything in detail about
this third phenomenon. In Section XI we shall decide the question of whether
balls roll or slide in this movement.

X. THE VIBRATION PATH

1. The Rocking Angle

If the roller bearing works only under a moderate radial load or must
transmit only a torque moment, deformation is negligibly small, and therefore
the base circle radius (Figures 1 and 2) amounts to

p = e sin y = h tan y = p sin p.

If we disregard friction, rocking vibration cannot occur and a tilting
action takes place only until polejpoint S reaches the base circle (of radius
p) as a result of an increase in revolutions. It can be determined by direct
geometrical consideration that a tilting motion cannot occur once the pole
distance is smaller than the base circle radius, namely because the tilting
position geometrically represents that tangent which is drawn from pole point
S to the base circle (of radius p). There are no tangents from a point which
lies within the circle.

As soon as we are concerned with a radial load, deformation must also be
taken into consideration. In this connection it was necessary to introduce
another, i.e., a protracted circle of radius e' to replace the rotational path
of radius e, but here the radius of the base circle became greater than the
original value, namely

p' = e' sin 5
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Here E with a small load can even be equal to y, and with a greater load is /53
( 1800/2, and therefore:

1Q1naxVfC

When the concept of friction is brought in, we must deal with the
phenomenon of rocking vibrations, characterized by the rocking angle p. The
meaning of this is that the tilting position is no longer actually identical to
that determined geometrically, but is displaced around the rocking angle. As
already mentioned, this angle depends upon the pole position. While the pole
position works its way inward from infinity to the rotational path of the shaft
midpoint, angle T climbs from its initial value p to the value of 2p. If the
pole distance is shortened even more, the value of the rocking angle increases
more.

The geometric clarifi-

E, cation of equation (39) is
presented in Figure 19. The
tip of the angle p lies at
point K'. On one of the

F 9 K legs we choose any point F as
the midpoint of a circle
which, with radius FE1,
touches the other leg at.

E point E1. Now we construct

a second circle of radius
FE2 concentric to the first

Figure 19, Relationship Between The circle, with the ratio of

Angle of Friction and the Rocking Angle the radii mentioned corres-
With Pole Distances of Different ponding to the following

Magnitude. equation

FE
'E = YP =P
FE2 ye' e'

If we now draw a tangent from point K' to this second circle, we get the
rocking angle:

E K'E 2 =

In Figure 20 we see the geometrical construction of the rocking angle
in a roller bearing. From point S' to the circle (with radius p') is drawn a
tangent whose point of intersection with the circle (of radius e') lies at
01, with the point of intersection with the external rolling circle lying at

Bl. This tangent characterizes the tilting position without friction. In

49



this position K'O is the midline of the bearing group of balls. This mid-

line intersectsthe outer rolling circle at point E1 . Now the circle of radii

FE 1 and FE2 are constructed from point F on the other leg of the angle p in

such a way that the following equations are valid for the segments:

FE = K' E'
1 1

and

FE = K' E2 2

In the geometrical
construction we see
the two parallel lines
by means of which

\ K' E2 :K' E' = e':p

Sp would correspond to the
ratio.

The straight line /55
K' E2 intersects point

02 outside the circle

E2. (of diameter e').

Now K' 0' is the

B,. midline of the bearing

B, .group of balls in the
, new tilting position.

The rocking angle is

Figure 20. Determination of the Phase Angle In order to find the new
of the Rocking Motion. point of contact B11 of

ball B on the outer
course, it is enough to

make the uniformity of the.segments valid, as follows (Figure 20):

E2B11 = E1B 1 .

In addition the picture shows that the operating line of force Q1, which

originating from pole S' passes the mass point 01, also strikes the ball
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midpoint B . The force line operating on line S'O, cannot however, not strike

the ball midpoint of ball B2, and therefore the ensuing torque moment holds a

balance at the time with the frictional moment.

The theorem that the direction of development of the rocking angle is
identical to the direction of torque of the shaft can be decided by simple
consideration of Figure 18 on the basis of the guide arrows inscribed (in\
individual:hatched surfaces in the diagram).

2. Tilting Path

Within the space conditioned by bearing clearance, the most character-
istic motion of the possible displacements of the shaft of the roller bearing
is tilting, since this must be dealt with whether deformation occurs or not,
and regardless of whether there is a lower or higher number of revolutions. If
we prescind from the rocking motion and limit ourselves to describing tilting
alone, the computational results still remain quite involved and hard to
summarize, being a consequence of the extremely great variability of the curves
along the path of the tilting sector of this vibration phenomenon in connection
with the multiple differentiation in operating parameters.

The question could be formulized in such a way that the path of the
individual mass point 0 of a weightless rod is to be described if a point B of
this rod moves along a circle of radius R with an angular velocity wk and with

an unaltered position of the force midpoint S' (Figure 21).

With a small load and two bearing balls = y; in such a position, and
especially at the beginning of tilting, we get according to (36)

After the "tilting segment" OFO has run its course, the "drag segment" 0 GO /56

follows along the circle (of radius e') as a conclusion of the vibration path.
If we consider the tilting center B as immobile for the length of the tilting,
we can observe the following relationship:

The radial or zenith amplitude

00 = y

is found at a right angle to the tangential or thrust amplitude

FG = X

ofthe closed vibration path. Now the zenith point F of this amplitude will
appear in that position of point B if point 0 stands in opposition to both
points B and K'. In'Figure 23 the displacement of the tilting.midpoint was also
taken into consideration.
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K

e .Figure 22. Tilting Curves,
SF , Referred to Their Common Point

of Origin.

II B

Figure 21. The Path of The Tilting
Motion. .

The phase angle p at the beginning . , J /57
of the tilting process can be accurately
determined according to equations (36)

and (38).

However, the position of the force
midpoint S' likewise remains unchanged
with an unchanged load and constant
revolution, and consequently the
measurement of the "tilting segment"
OFO1 is constantly repeated in the same

magnitude, even if another bearing group)
of balls enters the position of'the
previous ones; in other words the
rapidly successive hammering forces ,

strike the same spot on the race; it is

imaginable that we can perceive here Figure 23. The Sloping Line in
the Thales Circle For Dealing
With Thrust Amplitudes.
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the cause of the so-called "flaking", without bothering about whether the
deformation (with a small load) is negligible or whether we have to deal with
deformation.

With a small angular velocity of ball B we can look at the tilting segment
as an arc of midpoint B; however, if the angular velocity wk becomes greater

(i.e., if the pole distance p is diminished), the amplitude y will diminish in
the beginning and then completely disappear. If the value of wk increases

again, the amplitude y will return in the other direction and will keep grow-
ing until the circling movement finally occurs in place of the tilting.

In the beginning amplitude x retains its size, even if y becomes zero;
when y changes direction, x gradually becomes smaller and when circling
movement begins it approaches the zero value.

In Figure 22 we see the tilting curves developed at various phase angles,
but initial point 0 is centralized in them (by twisting around point K'). In
the sense of this figure the amplitude x should be designated as "zenith
amplitude", and the amplitude y as "thrust amplitude".

3. Approximate Computation of Thrust Amplitude

Let us now imagine a configuration of forces which operate at the initial
points of the tilting motions occurring at various phase angles, presented in
such a way that these force vectors come to lie on a single line around point /58
K. In this figure, where every force Q is thus oriented in the same SO
direction, the pertinent thrust amplitude appears as an oblique line with a
certain angle of inclination a. This kind of presentation can be seen in
Figure 23, in which the turning of the force vectors mentioned above was made
in the operating line of every tilting force which is effective at pole point S
lying in infinity. The angle of torque is equal to the angle 1/Jcoordinated
for the pole in question. For the sake of simplicity we have shifted the mid- /59
point of the circle of radius e' in this picture to point K.

If we first assume a pole point S lying in infinity, and then imagine
point B during tilting as stationary, the time which corresponds to the oblique
segment 000 as the path traveled will correspond to the time period which

would be necessary to cover a distance equal to the diameter (Dk = OJ0) of the

Thales Circle by free fall with the operation of acceleration proceeding from
point S. Now, however in the case of a pole distance of finite magnitude, the
value of wk is far from zero, and the tilting point B is therefore not

stationary: consequently the "thrust amplitude" becomes smaller and the time
period of the "tilting segment" becomes shorter, that is in comparison to the
case of an infinite pole distance. The geometric solution can be found if
there is success, for any value of the pole distance, in determining the
diameter of the pertinent Thales circle and the angle of inclination a.
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Figure 23a. Generation of Thrust Amplitude With A Shift In
The Tilting Center.

Figure 23b. Configuration With Maximum Dynamic Effect

According to Figure 23a and proceeding from any pole distance the angle /60
corresponds to

8 1KB = 2E Wk ,

of the torque made by the ball as the tilting midpoint during tilting time t
relative to the specific tilting are radius BK. This comes from the circum-
stance that the vector of the ball touches the circle of radius p' at the
beginning of tilting at point T and at the end of tilting at point T1.

Likewise according to Figure 23 the following formula is valid for the
angles with any perpendicular leg

7 BKC = 4 Oo 00 1 = e = 2o = - a .
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Now we must determine the path of a free fall which can be covered with
the operation of a tilting acceleration i' coordinated with a given pole
distance during the time of

2e
O(k

just because this path segment will be equal to the diameter DT = OJ of the

Thales circle coordinated to the given pole distance. In this sense we have

2DT -_ 2e: 2(oco-a)

y O~k  I O)k

and

2i'(xo--ac)*
D2 WD 

(48)

However now the right triangle KTC produces:

2 '

and also

.Dr = 2 tan a - 2i' cos . (49)

In addition with

p' = e' sin 5

and from equations (48) and (49) we have:

- ( o-a) - O' tan a-' cos = i' sin e tan -i' cos ,

from which follows the goniometric equation helping to determine a:

2'intan cos = 0.
(50)

With the first two members of the series /61

00. ' 2 '00 17 at? /5tall Ot= +- --- +3 3 5 32*5*7
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is produced the third degree equation

a 3-a X Cos___= , p 6p ' (51)

to determine the angle a.

The coefficients in equation (51) are to be found as follows:

Acceleration a (through which according to (8) the pole distance p is
determined), and the angular velocity wk can be considered as given values,

and angle E can be determined according to (21) with the introduction of y. In
addition the value of e' can be determined from equation (20), and the magni-
tude p' from equation (35). In addition the tilting acceleration i' and the
angle 0 corresponding to the infinite pole distance should be computed.

Along with the designations of Figure 23 we have the following relations:

If the individual sides of triangle (S)KO are multiplied by w2, the sides

of the vectorial triangle are produced, and in this sense

' = (s)o ,o j
and

(S)O = (S)T + TO = p_ "'2ein2  + ' cos F,

that is,

k' = +~~3' cos + vPp .n, .
(52)

In order to determine the angle c0 we make use of the right triangle KTB,

the hypotenuse of which is

BK f= '2+R+ 2'R, cos fAyR co08

where

TK _ ' sin (S3os a =-*(
BK VRI + 2Rk ' cos (
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Knowing the angle of inclination a of the oblique lines allows the
following magnitudes to be computed: from equations (48) or (49) the diameter
of the Thales circle, the length of thrust amplitude y, the projection of the
path y in the direction of acceleration i', and finally the thrust velocity.

The thrust amplitude reaches its greatest value with an infinite pole /62
distance. This is produced from the right triangle 000 J0 under consideration

of (53)

2 R& ' sin 2e' cosy = Dk COSO0 = YK + +
+ 2Rk CCO8 + 2 Cos (54)

Rk

Projection in the direction of the tilting force:

u'= ycos ao = Dk COs 2 Co (55)

According to point 2 of Section VI

is valid for the case of a pole lying in infinity, and in consideration of
(55) the final velocity amounts to:

v, =e = coS ao 2aD i, (56)

and the "fall time", i.e., the tilting time:

i/2Dk P/2Dk

a a (57)

4. The Greatest Dynamic Effect

In equations (50) and (51) we obtained useful quantitative expressions
to characterize various operational cases, but it is simple to recognize the
typical cases by geometric deduction from the Thales circle.

Figure 23 shows that the greatest value of the thrust amplitude y
according to equation (54) is to be expected with the slowest rotational
velocity (i.e., at zero revolutions).
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From Figures 23 and 23a a circle can be determined from the various Thales
circles where the projection of a path segment inclined by angle au on the

force line of the tilting force is greatest, and where the maximum of final
velocity is v2. According to the picture this limiting case appears connected

with the condition that the line connecting the end point of the vibration
amplitude with midpoint K is parallel to the tilting force vector.

In such a case according to Figures 23a and 23b the coincidence of the /63
triangles is:

A CHO, A KT, O,

precisely because the segments

HO. = TK = KTU L

are equal, and there is also uniformity of angles. Thus we obtain the radius
of the Thales circle

CO - KOu = RT = e'

and

umax= i'-- 'cos ~ '(1--cos). (58)

To the diameter of the Thales circle

DT = 2e'

there belongs according to (48) the tilting velocity

r (59)
(o - Cu) 2

By dividing by w we get the side SO of the force triangle:

so

Now from triangle SKO we get

SK a p a r'2 g2 COSSK = Pu-. = 2- 0 - 2 (60)
( n d (-,) (o-, )260
30 D+d
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and by means of equation (58) we get from the right triangle HOO

HO, ' sin
tana= - -

HO umwa g'(1-cos)
and

sin . 1
tan cc,

1-cos 5 tan (6/2) (61)

From the isosceles triangle 00uC we get: /64

Umax (62)

and

umax = ' = a' (1 -- a - sin2 6 = a' (1- coS t).

In accord with the acceleration value according to equation (59) we here
obtain the greatest thrust velocity:

V2max = 2V2'Unax = 1C 2'oB (1 -COB )

and

V'mOx 'ojf2(1--cosk) 2e_', (61

In consideration of the initial conditions, the greater the pole distance,
the more exact is the approximate computation with the aid of the Thales
circle, and if this circle diameter approaches zero, this method of compu-
tation loses its significance.

XI. SLIPPING ,

1. With One Bearing Ball

In Chapter VII we have derived a method of computation by means of Which
the forces can be determined which affect the individual pairs of balls in one
stable ball rim; this way of thinking helps us to be able to analyze in more
detail both the circumstances of rolling and also the conditions of slipping.
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In Figure 24 we see the shape of deformation of a single ball and of the
rolling paths. As we see, load distribution on the deformation circle is not
uniform, because the load is larger in the starting half and smaller in the
ending half. By calling on the principle of similarity we can state that we
get the spoke f of rolling friction if we always multiply the diameter 0 of the
elastic flattening by the same constant factor X:

f = X,,

where the factor X depends on the elasticity of the materials touching one
another. If we presume a uniform load distribution along the flattening semi-
circle, X with the spoke of the mass midpoint of the loaded semicircular arc /65
is equal to

20

But now the surface pressure is greater in the vicinity of the midpoint, and
because we must deal with the unloading activity of the ending semicircle
(depending on the elasticity of the materials), the inequality below is
effectively valid

X < 0.26.

In Videky [15] we find information about the friction coefficients of
cylindrical surfaces; this equation was derived from the Hertzian equations
and the pertinent geometric configurations, and is written as follows:

P' 1 r,-r2f =fo+0,38 i- -1
E ri+r r

Here f0 is the coefficient of friction in the normal direction, and P' is the

reduced pressure on the unit length (cm) of the cylinder length. This
equation can be used without further ado for the case of roller bearings (with
cylindrical or conical rollers). On the other hand, the presumption of direct
proportionality of the friction of the bearing ball to the diameter of the
flattening is sufficient for ball bearings.

We begin with the Hertzian equation [16] while maintaining the desig-
nations of Figure 24:

S= 2,2 2  N (b/2).r
VE (b/2)+r '
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and

0 = 2,22 N -(b12) R

E (b/2)+R

For the contact between two convex surfaces it should be:

b
r = (+ k)

and for contact between a convex and a concave surface:

b
R = (+ k) b,

and in consideration of the:relationship /66

Rk = 2r + b = d + b = 2R - b = D -b,

SNb I 1,76 N bd (64)
2 222~Ik E Rk

and a
'=2,22 NK 1,76 N b

V- RK--1 V k 1 (64a)

and for the lever arm of rolling friction

3 ' a
N bd fNbd (65)

f- 1,76 x E C
E Rk k

and

'-,76x N bD NbD

SE Rk k (65a)

with the value

C = 2,22 J I

2E

as material constants.
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2. The Case With One Bearing Pair /67
of Balls

Our research is primarily
valid for the condition of slippingj
in a pair of bearing balls (Figure

25) .

Figure 24. Deformation of the Ball N25a
and of the Roller Paths in the Case .
of a Single Ball.

Maintaining designations of b
Figure 25 and with p as the
coefficients of slipping friction,/ Figure 25. The Condition of Slipp-
the frictional force operating on

ing In the Case Of Only One Pairball B according to equation (18)
i Of Bearing Balls. a) Vectoris

Diagram.

N
1  2 cos y

This force will only compel the ball to roll when the torque moment operating
on the diametrially opposed point is greater than the moment which can be
computed from the cage friction (p1 V)b/2 and the roller resistance at the

point mentioned, where 1 signifies the frictional coefficient valid here and

the pertinent roller resistances affect the following arms:

rNjd Nbd
fRkbd 2cos y Rk.

and _

'C NbD
• e 2 cos y Rk
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The momentary equation is produced from the load of two balls of the pair /68
of balls:

b
Al = 2Nb 2NIf 1+2N f 4-2 VP1 - I

2

where (in accord with Figure 25a) the following relationships also exist:

_ _ N, ' sin y Nr , ' sin y
V= Nt sin e N, 0 = N a4 2 ---os c,

BK '+R21i+2'RkAcosy fR2k 2e RkCOs

i.e., in consideration of equations (18), (65) and (65a):

a ___ _a

pN N C I bd N C NbD
b + +

2cosy 2cosy b -2cosyR,. 2cosy b 2 os Rk

NiRu siny
2 cos I -+ 2 8' Rk cos y

i.e., rolling begins if the condition

C Nb e'8' sin t
> a +(Vd+b) +

b 2 cos y Rk 2Rj/co (66)
Rk V 1 + Rk

is fulfilled.

But if p is smaller than this expression, slipping will occur.

3. The Case With Several Bearing Pairs of Balls

With several pairs of balls the rolling condition can be written as
follows:

p(N 1 b+N 2 b+.. ) N(ft+f')+N2(f 2 f)+ ... +

+ N, e'sin yu1  + N 2 ' sin 3 y , +..
k8c7sy VR +2R k'co3y

where the corresponding N-values can be computed with equation (26) or from the

table given. This tedious computation simply indicates the relationship that

the limiting condition of slipping depends on the frictional values P and 1l'

as well as on the elastic properties of the material, the construction

properties of the roller bearings and the magnitude of the load.
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,, In consideration of the /69
S t'opossibility of slipping we can
"in Deformation Oeformation define eight different variations

. 1of vibration phenomena, depending
Supon the occurrence or lack of

c deformation. These variations are
/I summarized as in a table in

Figure 26, naturally for a roller
bearing with clearance and with
the assumption of a rotating

Ki e system balanced on its own axis.

S . 4. The Vibration Phenomena For
0i/ The Case Characterized by

p > p (Figure 26).

[K W (1) Purely kinetic
~ -~K vibrations; characterized by the

fact that only the bearing pairs
S• of balls come in contact with

' K - each other;

(2) A magnitude of the half
-.. -. load angle fluctuates between y

and 180 0 ; p < p' < e';

(3) Rocking and tilting on
Figure 26. Various Varieties of a circle of radius e;
Vibration Phenomena.

(4) Rocking and tilting on
a circle of diameter e'.

5. Vibration Phenomena For The Case Characterized by p < p /70

This case has only been mentioned in passing in the previous consider-
ations; in our way of thinking we have not adduced any theoretically proven
determinations; the variations presented here (in Figure 26) under 5...8 can
be considered as probabilities until experiments have clarified the circle
phenomena characterized by p < p.

(5) Planet movements; the shaft turns about on its own midline and
executes a circular motion on a circle of radius e on the same pair of balls,
and this lasts until the number of revolutions drops.

(6) Planet movement on several pairs of bearing balls on one curve of
radius e' > e, but without friction of the carrying pairs of balls.

(7) Tilting movements during the circular movement caused byslipping.
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(8) If the load arc is great enough, it is conceivable that the shaft
"is shifted by a definite angle" in the direction of turn, and that during
rotation the midline of the shaft continues in an unstable position (it is
possible for the cage to rotate at half speed).

XII. THE EFFECT OF THE DEFORMATION VELOCITY

In our above exposition it was convenient for the sake of simplicity and
uniformity to adopt a uniform course of tilting motion for all angular values
E. But.this variation is only possible under the assumption that the velocity
of deformation remains behind the rate of change in the effective force. In
reality the occurrence of a "sharp" tipping is to be considered as probable
only with simultaneous operation of a few bearing balls, large bearing clear-
ance, and a high rotation number.

If bearing clearance is small, load great and rotation number low, every
ball involved in tilting has enough time available to flatten itself under the
load even before the entire load sector has been covered. In such a case
there can scarcely be any talk of the tipping of the entire load segment; a
"coasting process" occurs here when the individual ball enters the load angle
sector.

But we very well know the property of materials, namely that the more
suddenly forces follow each other the more brittle they are. Consequently
the greater the revolutions with the same clearance and unchanged load, the
stronger the tilting.
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